Draft ## Impervious Cover Assessment for Carneys Point Township, Salem County, New Jersey Prepared for Carneys Point Township by the Rutgers Cooperative Extension Water Resources Program April 2, 2018 ## **Table of Contents** | Introduction | 1 | |--|----| | Carneys Point Township Impervious Cover Analysis | 4 | | Elimination of Impervious Surfaces | 12 | | Pervious Pavement | 14 | | Impervious Cover Disconnection Practices | 14 | | Examples of Opportunities in Carneys Point Township | 17 | | Conclusions | 17 | | References | 18 | | Appendix A: Concept Plans and Detailed Green Infrastructure Information Sheets | | ### Introduction Pervious and impervious are terms that are used to describe the ability or inability of water to flow through a surface. When rainfall hits a surface, it can soak into the surface or flow off the surface. Pervious surfaces are those which allow stormwater to readily soak into the soil and recharge groundwater. When rainfall drains from a surface, it is called "stormwater" runoff (Figure 1). An impervious surface can be any material that has been placed over soil that prevents water from soaking into the ground. Impervious surfaces include paved roadways, parking lots, sidewalks, and rooftops. As impervious areas increase, so does the volume of stormwater runoff. Figure 1: Stormwater draining from a parking lot New Jersey has many problems due to stormwater runoff, including: - Pollution: According to the 2010 New Jersey Water Quality Assessment Report, 90% of the assessed waters in New Jersey are impaired, with urban-related stormwater runoff listed as the most probable source of impairment (USEPA, 2013). As stormwater flows over the ground, it picks up pollutants including animal waste, excess fertilizers, pesticides, and other toxic substances. These pollutants are then able to enter waterways. - <u>Flooding</u>: Over the past decade, the state has seen an increase in flooding. Communities around the state have been affected by these floods. The amount of damage caused has also increased greatly with this trend, costing billions of dollars over this time span. <u>Erosion</u>: Increased stormwater runoff causes an increase in the velocity of flows in our waterways. The increased velocity after storm events erodes stream banks and shorelines, degrading water quality. This erosion can damage local roads and bridges and cause harm to wildlife. The primary cause of the pollution, flooding, and erosion problems is the quantity of impervious surfaces draining directly to local waterways. New Jersey is one of the most developed states in the country. Currently, the state has the highest percent of impervious cover in the country at 12.1% of its total area (Nowak & Greenfield, 2012). Many of these impervious surfaces are directly connected to local waterways (i.e., every drop of rain that lands on these impervious surfaces ends up in a local river, lake, or bay without any chance of being treated or soaking into the ground). To repair our waterways, reduce flooding, and stop erosion, stormwater runoff from impervious surfaces has to be better managed. Surfaces need to be disconnected with green infrastructure to prevent stormwater runoff from flowing directly into New Jersey's waterways. Disconnection redirects runoff from paving and rooftops to pervious areas in the landscape. Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principal, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these technologies can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits (USEPA, 2013). The first step to reducing the impacts from impervious surfaces is to conduct an impervious cover assessment. This assessment can be completed on different scales: individual lot, municipality, or watershed. Impervious surfaces need to be identified for stormwater management. Once impervious surfaces have been identified, there are three steps to better manage these surfaces. - 1. *Eliminate surfaces that are not necessary.* For example, a paved courtyard at a public school could be converted to a grassed area. - 2. Reduce or convert impervious surfaces. There may be surfaces that are required to be hardened, such as roadways or parking lots, but could be made smaller and still be functional. A parking lot that has two-way car ways could be converted to one-way car ways. There also are permeable paving materials such as porous asphalt, pervious concrete, or permeable paving stones that could be substituted for impermeable paving materials (Figure 2). - 3. *Disconnect impervious surfaces from flowing directly to local waterways.* There are many ways to capture, treat, and infiltrate stormwater runoff from impervious surfaces. Opportunities may exist to reuse this captured water. Figure 2: Rapid infiltration of water through porous pavement is demonstrated at the USEPA Edison New Jersey test site ### **Carneys Point Township Impervious Cover Analysis** Carneys Point Township is located in Salem County, New Jersey and covers approximately 17.71 square miles north of Mannington Township. Figures 3 and 4 illustrate that Carneys Point Township is dominated by wetlands land uses. A total of 25.7% of the municipality's land use is classified as urban. Of the urban land in Carneys Point Township, medium density residential is the dominant land use (Figure 5). The literature suggests a link between impervious cover and stream ecosystem impairment (Schueler, 1994; Arnold and Gibbons, 1996; May et al., 1997). Impervious cover may be linked to the quality of lakes, reservoirs, estuaries, and aquifers (Caraco et al., 1998), and the amount of impervious cover in a watershed can be used to project the current and future quality of streams. Based on the scientific literature, Caraco et al. (1998) classified urbanizing streams into the following three categories: sensitive streams, impacted streams, and non-supporting streams. Schueler (1994, 2004) developed an impervious cover model that classified "sensitive streams" as typically having a watershed impervious surface cover from 0-10%. "Impacted streams" have a watershed impervious cover ranging from 11-25% and typically show clear signs of degradation from urbanization. "Non-supporting streams" have a watershed impervious cover of greater than 25%; at this high level of impervious cover, streams are simply conduits for stormwater flow and no longer support a diverse stream community. Schueler et al. (2009) reformulated the impervious cover model based upon new research that had been conducted. This new analysis determined that stream degradation was first detected at 2 to 15% impervious cover. The updated impervious cover model recognizes the wide variability of stream degradation at impervious cover below 10%. The updated model also moves away from having a fixed line between stream quality classifications. For example, 5 to 10% impervious cover is included for the transition from sensitive to impacted, 20 to 25% impervious cover for the transition between impacted and nonsupporting, and 60 to 70% impervious cover for the transition from non-supporting to urban drainage. Figure 3: Pie chart illustrating the land use in Carneys Point Township Figure 4: Map illustrating the land use in Carneys Point Township Figure 5: Pie chart illustrating the various types of urban land use in Carneys Point Township The New Jersey Department of Environmental Protection's (NJDEP) 2012 land use/land cover geographical information system (GIS) data layer categorizes Carneys Point Township into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Carneys Point Township. Based upon the 2012 NJDEP land use/land cover data, approximately 8.5% of Carneys Point Township has impervious cover. This level of impervious cover suggests that the streams in Carneys Point Township are likely sensitive streams. Water resources are typically managed on a watershed/subwatershed basis; therefore, an impervious cover analysis was performed for each subwatershed within Carneys Point Township (Table 1 and Figure 6). On a subwatershed basis, impervious cover ranges from 4.5% in the Salem River subwatershed to 16.7% in the LDVR (Lower Delaware River) subwatershed. Evaluating impervious cover on a subwatershed basis allows the municipality to focus impervious cover reduction or disconnection efforts in the subwatersheds where frequent flooding occurs. In developed landscapes, stormwater runoff from parking lots, driveways, sidewalks, and rooftops flows to drainage pipes that feed the sewer system. The cumulative effect of these impervious surfaces and thousands of connected downspouts reduces the amount of water that can infiltrate into soils and greatly increases the volume and rate of runoff that flows to waterways. Stormwater runoff volumes (specific to Carneys Point Township, Salem County) associated with impervious surfaces were calculated for the following storms: the New Jersey water quality design storm of 1.25 inches of rain, an annual rainfall of 44 inches, the 2-year design storm (3.3 inches of rain), the 10-year design storm (5.0 inches of rain), and the 100-year design storm (8.5 inches of rain). These runoff volumes are summarized in Table 2. A substantial amount of rainwater drains from impervious surfaces in Carneys Point Township. For example, if the stormwater runoff from one water quality storm (1.25 inches of rain) in the LDRV subwatershed was harvested and purified, it could supply water to 171 homes for one year¹. - ¹ Assuming 300 gallons per day per home Table 1: Impervious cover analysis by subwatershed for Carneys Point Township | Subwatershed | Total A | rea | Land Use | Area | Water | Area | Impe | rvious Co | over | |--------------|----------|--------------------|----------|--------------------|-------|--------------------|-------|--------------------|-------| | | (ac) | (mi ²) | (%) | | Game Creek | 4,362.3 | 6.82 | 4,135.6 | 6.46 | 226.8 | 0.35 | 191.5 | 0.30 | 4.6% | | LDRV | 3,899.3 | 6.09 | 3,701.9 | 5.78 | 197.4 | 0.31 | 552.3 | 0.86 | 14.9% | | Salem River | 3,073.4 | 4.80 | 2,930.9 | 4.58 | 142.5 | 0.22 | 132.8 | 0.21 | 4.5% | | Total | 11,335.1 | 17.71 | 10,768.4 | 16.83 | 566.8 | 0.89 | 876.6 | 1.37 | 8.1% | Figure 6: Map of the subwatersheds in Carneys Point Township Table 2: Stormwater runoff volumes from impervious surfaces by subwatershed in Carneys Point Township | Subwatershed | Total Runoff Volume for the 1.25" NJ Water Quality Storm (MGal) | Total Runoff Volume for the NJ Annual Rainfall of 44" (MGal) | Total Runoff Volume for the 2- Year Design Storm (3.3") (MGal) | Total Runoff Volume for the 10- Year Design Storm (5.0") (MGal) | Total Runoff Volume for the 100-Year Design Storm (8.5") (MGal) | |--------------|---|--|--|---|---| | Game Creek | 6.5 | 228.8 | 17.2 | 26.0 | 44.2 | | LDRV | 18.7 | 659.8 | 49.5 | 75.0 | 127.5 | | Salem River | 4.5 | 158.7 | 11.9 | 18.0 | 30.7 | | Total | 29.8 | 1,047.3 | 78.5 | 119.0 | 202.3 | The next step is to set a reduction goal for impervious area in each subwatershed. Based upon the Rutgers Cooperative Extension (RCE) Water Resources Program's experience, a 10% reduction would be a reasonably achievable reduction for these subwatersheds in Carneys Point Township. While it may be difficult to eliminate paved areas or replace paved areas with permeable pavement, it is relatively easy to identify impervious surfaces that can be disconnected using green infrastructure practices. For all practical purposes, disconnecting an impervious surface from a storm sewer system or a water body is an "impervious area reduction." The RCE Water Resources Program recommends that all green infrastructure practices that are installed to disconnect impervious surfaces should be designed for the 2-year design storm (3.3 inches of rain over 24-hours). Although this results in management practices that are slightly over-designed by NJDEP standards, which require systems to be designed for the New Jersey water quality storm (1.25 inches of rain over 2-hours), these systems will be able to handle the increase in storm intensities that are expected to occur due to climate change. By designing these management practices for the 2-year design storm, these practices will be able to manage 95% of the annual rainfall volume. The recommended annual reductions in runoff volumes are shown in Table 3. As previously mentioned, once impervious surfaces have been identified, the next steps for managing impervious surfaces are to 1) eliminate surfaces that are not necessary, 2) reduce or convert impervious surfaces to pervious surfaces, and 3) disconnect impervious surfaces from flowing directly to local waterways. ## **Elimination of Impervious Surfaces** One method to reduce impervious cover is to "depave." Depaving is the act of removing paved impervious surfaces and replacing them with pervious soil and vegetation that will allow for the infiltration of rainwater. Depaving leads to the re-creation of natural space that will help reduce flooding, increase wildlife habitat, and positively enhance water quality as well as beautify neighborhoods. Depaving also can bring communities together around a shared vision to work together to reconnect their neighborhood to the natural environment. Table 3: Impervious cover reductions by subwatershed in Carneys Point Township | Subwatershed | Recommended Impervious Area Reduction (10%) (ac) | Annual
Runoff
Volume
Reduction
2
(Mgal) | |--------------|--|--| | Game Creek | 19.1 | 21.7 | | LDRV | 55.2 | 62.7 | | Salem River | 13.3 | 15.1 | | Total | 87.7 | 99.5 | 2 Annual Runoff Volume Reduction = Acres of IC x 43,560 ft²/ac x 44 in x (1 ft/12 in)x 0.95 x (7.48 gal/ft³) x (1 MGal/1,000,000 gal) All BMPs should be designed to capture the first 3.3 inches of rain from each storm. This would allow the BMP to capture 95% of the annual rainfall of 44 inches. ## **Pervious Pavement** There are four different types of permeable pavement systems that are commonly being used throughout the country to reduce the environmental impacts from impervious surfaces. These surfaces include pervious concrete, porous asphalt, interlocking concrete pavers, and grid pavers. "Permeable pavement is a stormwater drainage system that allows rainwater and runoff to move through the pavement's surface to a storage layer below, with the water eventually seeping into the underlying soil. Permeable pavement is beneficial to the environment because it can reduce stormwater volume, treat stormwater water quality, replenish the groundwater supply, and lower air temperatures on hot days (Rowe, 2012)." Permeable surfaces: (A) pervious concrete, (B) porous asphalt, (C) interlocking concrete pavers, (D) grid pavers (Rowe, 2012) Pervious concrete and porous asphalt are the most common of the permeable surfaces. They are similar to regular concrete and asphalt but without the fine materials. This allows water to quickly pass through the material into an underlying layered system of stone that holds the water, allowing it to infiltrate into the underlying uncompacted soil. ## **Impervious Cover Disconnection Practices** By redirecting runoff from paving and rooftops to pervious areas in the landscape, the amount of directly connected impervious area in a drainage area can be greatly reduced. There are many cost-effective ways to disconnect impervious surfaces from local waterways. • <u>Simple Disconnection</u>: This is the easiest and least costly method to reduce stormwater runoff for smaller storm events. Instead of piping rooftop runoff to the street where it enters the catch basin and is piped to the river, the rooftop runoff is released onto a grassed area to allow the water to be filtered by the grass and soak into the ground. A healthy lawn typically can absorb the first one to two inches of stormwater runoff from a rooftop. Simple disconnection also can be used to manage stormwater runoff from paved areas. Designing a parking lot or driveway to drain onto a grassed area, instead of the street, can dramatically reduce pollution and runoff volumes. • Rain Gardens: Stormwater can be diverted into shallow landscaped depressed areas (i.e., rain gardens) where the vegetation filters the water, and it is allowed to soak into the ground. Rain gardens, also known as bioretention systems, come in all shapes and sizes and can be designed to disconnect a variety of impervious surfaces (Figure 7). Figure 7: Rain garden outside the RCE of Gloucester County office which was designed to disconnect rooftop runoff from the local storm sewer system • Rainwater Harvesting: Rainwater harvesting includes the use of rain barrels and cisterns (Figures 8a and 8b). These can be placed below downspouts to collect rooftop runoff. The collected water has a variety of uses including watering plants and washing cars. This practice also helps cut down on the use of potable water for nondrinking purposes. It is important to divert the overflow from the rainwater harvesting system to a pervious area. Figure 8a: Rain barrel used to disconnect a downspout with the overflow going to a flower bed Figure 8b: A 5,000 gallon cistern used to disconnect the rooftop of the Department of Public Works in Clark Township to harvest rainwater for nonprofit car wash events ## **Examples of Opportunities in Carneys Point Township** To address the impact of stormwater runoff from impervious surfaces, the next step is to identify opportunities in the municipality for eliminating, reducing, or disconnecting directly connected impervious surfaces. To accomplish this task, an impervious cover reduction action plan should be prepared. Aerial photographs are used to identify sites with impervious surfaces in the municipality that may be suitable for inclusion in the action plan. After sites are identified, site visits are conducted to photo-document all opportunities and evaluate the feasibility of eliminating, reducing, or disconnecting directly connected impervious surfaces. A brief description of each site discussing the existing conditions and recommendations for treatment of the impervious surfaces is developed. After a number of sites have been selected for inclusion in the action plan, concept plans and detailed green infrastructure information sheets are prepared for a selection of representative sites. For Carneys Point Township, three sites have been included in this assessment. Examples of concept plans and detailed green infrastructure information sheets are provided in Appendix A. The detailed green infrastructure information sheets describe existing conditions and issues, proposed solutions, anticipated benefits, possible funding sources, potential partners and stakeholders, and estimated costs. Additionally, each project has been classified as a mitigation opportunity for recharge potential, total suspended solids removal, and stormwater peak reduction. Finally, these detailed green infrastructure information sheets provide an estimate of gallons of stormwater captured and treated per year by each proposed green infrastructure practice. The concept plans provide an aerial photograph of the site and details of the proposed green infrastructure practices. ### **Conclusions** Carneys Point Township can reduce flooding and improve its waterways by better managing stormwater runoff from impervious surfaces. This impervious cover assessment is the first step toward better managing stormwater runoff. The next step is to develop an action plan to eliminate, reduce, or disconnect impervious surfaces where possible and practical. Many of the highly effective disconnection practices are inexpensive. The entire community can be engaged in implementing these disconnection practices. ## References Arnold, Jr., C.L. and C.J. Gibbons. 1996. Impervious Surface Coverage The Emergence of a Key Environmental Indicator. *Journal of the American Planning Association* 62(2): 243-258. Caraco, D., R. Claytor, P. Hinkle, H. Kwon, T. Schueler, C. Swann, S. Vysotsky, and J. Zielinski. 1998. Rapid Watershed Planning Handbook. A Comprehensive Guide for Managing Urbanizing Watersheds. Prepared by Center For Watershed Protection, Ellicott City, MD. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Region V. October 1998. May, C.W., R.R. Horner, J.R. Karr, B.W. Mar, and E.G. Welch. 1997. Effects of Urbanization on Small Streams in the Puget Sound Lowland Ecoregion. *Watershed Protection Techniques* 2(4): 483-493. Nowak, D.J. and E.J. Greenfield. 2012. Trees and Impervious Cover in the United States. *Landscape and Urban Planning* 107 (2012): 21-30. http://www.nrs.fs.fed.us/pubs/jrnl/2012/nrs 2012 nowak 002.pdf Rowe, A. 2012. Green Infrastructure Practices: An Introduction to Permeable Pavement. Rutgers NJAES Cooperative Extension, FS1177, pp. 4. http://njaes.rutgers.edu/pubs/publication.asp?pid=FS1177 Schueler, T. 1994. The Importance of Imperviousness. *Watershed Protection Techniques* 1(3): 100-111. Schueler, T.R. 2004. An integrated framework to restore small urban watersheds. Center for Watershed Protection, Ellicott City, MD. Schuler, T.R., L. Fraley-McNeal, and K. Cappiella. 2009. Is Impervious Cover Still Important? Review of Recent Research. *Journal of Hydrologic Engineering* 14 (4): 309-315. United States Environmental Protection Agency (USEPA). 2013. Watershed Assessment, Tracking, and Environmental Results, New Jersey Water Quality Assessment Report. http://ofmpub.epa.gov/waters10/attains_state.control?p_state=NJ ## Appendix A **Concept Plans and Detailed Green Infrastructure Information Sheets** ## Carneys Point Township ## Impervious Cover Assessment Kingdom Hall of Jehovah's Witnesses, 269 South Golfwood Avenue ## PROJECT LOCATION: - 1 BIOSWALE: A bioswale could be installed to capture and convey stormwater from the parking lot while removing pollutants and providing water an opportunity to infiltrate. - PERVIOUS PAVEMENT: A strip of pervious pavement could be installed south of the building where several disconnected downspouts drain stormwater runoff from the roof. Pervious pavement promotes groundwater recharge and filters stormwater. - 3 PLANTER BOX: Planter boxes could be installed on the northeast side of the building to collect water from the nearby disconnected downspouts. Planter boxes reduce runoff and allow water to slowly infiltrate while being treated for pollutants. Rutgers ## SITE PLAN: ## **BIOSWALE** ## PERVIOUS PAVEMENT ## PLANTER BOX ## Kingdom Hall of Jehovah's Witnesses Green Infrastructure Information Sheet | Location: 269 South Golfwood Avenue Penns Grove, NJ 08069 | Municipality: Carneys Point Township Subwatershed: Lower Delaware River Tributary | |--|--| | Green Infrastructure Description: bioswale porous pavement planter boxes | Targeted Pollutants: total nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) in surface runoff | | Mitigation Opportunities: recharge potential: yes stormwater peak reduction potential: yes total suspended solids removal potential: yes | Stormwater Captured and Treated Per Year: bioswale: 70,350 gal. 8 planter boxes: 10,610 gal. Porous pavement: 459,090 gal. | ## **Existing Conditions and Issues:** This site currently contains impervious surfaces that contribute to stormwater runoff and pollution. These impervious surfaces are not directly connected to a storm sewer system. On the northeast part of the building, there are four disconnected downspouts flowing onto a turfgrass area and side parking lot, causing erosion and flooding. South of the building, there are four disconnected downspouts flowing onto the back parking lot. The runoff on this site drains to the parking lot southeast of the building. ### **Proposed Solution(s):** A bioswale could be placed on a patch of turfgrass on the northwest side of the building to manage stormwater from the side parking lot. On the northeast side of the building the disconnected downspouts could be redirected into eight planter boxes. Portions of the southernmost parking lot can be repaved using porous pavement. This will promote groundwater recharge and help prevent pollutants from entering nearby waterways. ### **Anticipated Benefits:** The bioswale will capture, treat, and infiltrate stormwater reducing TN by 30%, TP by 60%, and TSS by 90%. Porous pavement allows stormwater to infiltrate through to soil layers which will promote groundwater recharge as well as intercept and filter stormwater runoff. The porous pavement system will be designed to capture, treat, and infiltrate the entire 2-year design storm (3.3 inches of rain over 24 hours); these systems are estimated to reduce TN by 30%, TP by 60%, and TSS by 90%. Planter boxes will take in runoff from downspouts and achieve similar reductions in TN, TP, and TSS as the bioswale. ### **Possible Funding Sources:** mitigation funds from local developers NJDEP grant programs Penns Grove Borough local social and community groups ## Kingdom Hall of Jehovah's Witnesses Green Infrastructure Information Sheet ## Partners/Stakeholders: Penns Grove Borough Kingdom Hall of Jehovah's Witnesses Local community groups Residents and parishioners Rutgers Cooperative Extension ## **Estimated Cost:** The bioswale would need to be approximately 676 square feet (130' x 5.2'). At \$5 per square foot, the estimate cost of the bioswale is \$3,380. The porous asphalt would cover 3,186 square feet and have a two-foot stone reservoir under the surface. At \$25 per square foot, the cost of the porous asphalt system would be \$79,650. The estimated cost of each planter box is \$1,000 for a total cost of \$8,000. The total cost of the project will be approximately \$91,030. ## Carneys Point Township Impervious Cover Assessment Carneys Point Fire & Rescue, 258 D Street ## PROJECT LOCATION: - PLANTER BOX: A planter box could be installed at the southwest side of the building to collect water from the nearby disconnected downspouts. Planter boxes reduce runoff and allow water to slowly infiltrate while being treated for pollutants - **RAINWATER HARVESTING SYSTEM:** Rainwater can be harvested from the roof of the building and stored in a cistern to be used to wash vehicles and water existing landscaping. ## PLANTER BOX ## RAINWATER HARVESTING SYSTEM ## Carneys Point Fire & Rescue Green Infrastructure Information Sheet | Location: 258 D Street Carneys Point, NJ 08069 | Municipality: Carneys Point Township Subwatershed: Lower Delaware River Tributary | |--|---| | Green Infrastructure Description: rain harvesting system (cistern) planter boxes | Targeted Pollutants: total nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) in surface runoff | | Mitigation Opportunities: recharge potential: yes stormwater peak reduction potential: yes total suspended solids removal potential: yes | Stormwater Captured and Treated Per Year: downspout planter box: 1,360 gal. cistern: 10,035 gal. disconnected downspouts: 87,360 gal. | ## **Existing Conditions and Issues:** Northeast of the building there are disconnected downspouts flowing onto impervious pavement. On the eastern side of the building there are disconnected downspouts that collect runoff from the building's largest roof. On the back of the building there are two connected downspouts, and near the front entrance are two connected downspouts. ### **Proposed Solution(s):** The disconnected downspouts on the northwest portion of the building can be redirected into a cistern by the main entrance. The rainwater collected in the cistern can be used to water existing landscape and wash vehicles. A planter box could be installed on the southwest side of the building to collect water from the nearby disconnected downspouts. Planter boxes reduce runoff and allow water to slowly infiltrate while being treated for pollutants ### **Anticipated Benefits:** Since the rainwater harvesting system would be designed to capture the first 1.25 inches of rain, it would reduce the pollutant loading by 90% during the periods it is operational (i.e., it would not be used in the winter when there is a chance of freezing). A cistern can be used to harvest rainwater which can be used for washing emergency vehicles, watering plants, or other purposes which reduce the use of potable water for non-drinking purposes. The simple disconnection also would reduce the pollutant loading by 90% since it will manage the water quality design storm of 1.25 inches of rain. The downspout planter boxes could manage the runoff from the roof by storing, infiltrating, and releasing runoff into groundwater supplies. ### **Possible Funding Sources:** mitigation funds from local developers NJDEP grant programs Carneys Point Township Carneys Point Fire & Rescue local social and community groups ## Carneys Point Fire & Rescue Green Infrastructure Information Sheet ## Partners/Stakeholders: Carneys Point Township Carneys Point Fire & Rescue local community groups local residents Rutgers Cooperative Extension ## **Estimated Cost:** The cistern would be 10,035 gallons and cost approximately \$1,270 to purchase and install. To disconnect all four connected downspouts, the cost would be about \$1,000. The estimated cost of the planter box is \$1,000. The total cost of the project will be approximately \$3,270. ## Carneys Point Township Impervious Cover Assessment CrossPoint Wesleyan Church, 333 Georgetown Road # RUTGERS New Jersey Agricultura Experiment Station ## PROJECT LOCATION: - BIORETENTION SYSTEM: A rain garden can be built in the turfgrass area south of the main building. Rain gardens can be used to reduce sediment and nutrient loading to the local waterway and increase groundwater recharge. - PLANTER BOX: Two planter boxes can be installed east of the building to collect water from the nearby downspout. Planter boxes reduce runoff and allow water to slowly infiltrate while being treated for pollutants. ## SITE PLAN: ## BIORETENTION SYSTEM ## **PLANTER BOX** ## CrossPoint Wesleyan Church Green Infrastructure Information Sheet | Location:
333 Georgetown Road
Penns Grove, NJ 08069 | Municipality: Carneys Point Township Subwatershed: Lower Delaware River Tributary | |--|---| | Green Infrastructure Description: bioretention system (rain garden) planter boxes | Targeted Pollutants: total nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) in surface runoff | | Mitigation Opportunities: recharge potential: yes stormwater peak reduction potential: yes total suspended solids removal potential: yes | Stormwater Captured and Treated Per Year: bioretention system: 38,950 gal. four downspout planter boxes: 6,180 gal. disconnecting downspouts: 23,330 gal. | ### **Existing Conditions and Issues:** At the back of the larger building there are two disconnected downspouts flowing onto the turfgrass causing erosion, and to the right of the building there is a connected downspout. On left side of the smaller building is a disconnected downspout that collects runoff from that building's roof. ### **Proposed Solution(s):** The connected downspout on the right of the larger building can be disconnected and redirected to flow to a bioretention system, and the disconnected downspout on the left of the smaller building can also be redirected to the bioretention system as well. The two disconnected downspouts in the back of the building can be redirected into four planter boxes. ## **Anticipated Benefits:** Since the bioretention systems would be designed to capture, treat, and infiltrate the entire 2-year design storm (3.3 inches of rain over 24 hours), these systems are estimated to reduce TN by 30%, TP by 60%, and TSS by 90%. A bioretention system would also provide ancillary benefits, such as enhanced wildlife and aesthetic appeal, to the local residents. Planter boxes will take in runoff from downspouts and achieve similar reductions in TN, TP, and TSS as the bioretention systems. The simple disconnection also would reduce the pollutant loading by 90% since it will manage the water quality design storm of 1.25 inches of rain. ## **Possible Funding Sources:** mitigation funds from local developers NJDEP grant programs Carneys Point Township local social and community groups ## CrossPoint Wesleyan Church Green Infrastructure Information Sheet ## Partners/Stakeholders: Carneys Point Township CrossPoint Wesleyan Church local community groups residents and parishioners Rutgers Cooperative Extension ## **Estimated Cost:** A rain garden would need to be approximately 374 square feet. At \$5 per square foot, the estimated cost of the rain garden is \$1,870. Disconnecting the downspout will cost about \$250 each for a total cost of \$250. The downspout planter boxes would be 12 square feet in size and the estimated cost of each planter box is \$1,000 for a total cost of \$4,000. The total cost of the project will be approximately \$6,120.